G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
{ -1 / G* = / T] / c} =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
/ /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
/ , / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Em análise funcional e na teoria de medição quântica,[1][2][3] uma 'medida com operador positivo valorizado', ou POVM (em inglês), é uma medida cujos valores são operadores autoadjuntos não negativos em um espaço de Hilbert e cuja integral é o operador de identidade.[4][5][6] Historicamente, o termo medida de operador de probabilidade (POM) tem sido usado como sinônimo de POVM,[7] embora este uso seja presentemente raro.
Definição
No caso mais simples, um POVM é um conjunto de operadores semidefinídos positivos[8][9][10] Hermitianos em um espaço de Hilbert que somam ao operador[11][12] de identidade,
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
Esta fórmula é uma generalização da decomposição de um espaço de Hilbert (dimensional finito) por um conjunto de projetores ortogonais, , definido para uma base ortogonal por:
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
Uma diferença importante é que os elementos de uma POVM não são necessariamente ortogonais, com a consequência de que o número de elementos na POVM, n, pode ser maior que a dimensão, N, do espaço de Hilbert em que atuam.
Em geral, os POVMs podem ser definidos em situações em que os resultados das medições tomam valores em um espaço não discreto. O fato relevante é que a medição determina uma medida de probabilidade no espaço do resultado seguindo a definição:
Deixe (X, M) ser espaço mensurável; que é "M" é uma álgebra σ de subconjuntos de X. Uma POVM é uma função F definida em M cujos valores são operadores autoadjunto não negativos limitados em um espaço de Hilbert H tal que F(X) = IH e para todo ξ H,
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
é uma medida contavelmente aditiva[13][14] não-negativa sobre a álgebra-σ H. Essa definição deve ser contrastada com a da medida com valor de projeção, que é semelhante, exceto que para medidas com valor de projeção,[15][16][17] os valores de F são obrigados a serem operadores de projeção.
Uma caminhada quântica em tempo contínuo ou CTQW (em inglês "Continuous-time quantum walk"), é uma caminhada em um determinado grafo conectado que é ditada por uma matriz unitária variando no tempo que se baseia no Hamiltoniano do sistema quântico[1] e na matriz de adjacência.[2][3]
Definição matemática
Uma caminhada quântica contínua (CTQW) em um grafo G = (V,E), onde V é o conjunto de vértices (nós) e E é o conjunto de arestas que conectam os nós, é definido da seguinte maneira:
- Deixe que A seja a matriz de adjacência |V| |V| de G com elementos
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
e D ser a matriz de grau[4][5] |V| |V| de G (para o qual a entrada diagonal correspondente ao vértice v é grau (v)), e deixe L = D - A, ser a matriz laplaciana[6][7][8] correspondente que é semidefinida positiva. A caminhada quântica em tempo contínuo no gráfico G é então definida pela matriz unitária
/
/G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde é a unidade imaginária e a matriz . A probabilidade de uma caminhada a partir do vértice terminando no vértice no tempo é dado por .Consequentemente, a partir do estado quântico e realizando uma caminhada quântica para o tempo resultará no novo estado e medição irá assim localizar a caminhada no vértice com a probabilidade .[9]
Comentários
Postar um comentário